Using radiomics features to predict molecular subtype of breast cancer
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Fig. 4 For one target, PR, the heatmap below shows performance across models (y-
axis) and feature subsets (x-axis). We note that adding clinical features (2)
outperforms the raw data (1) in some cases. We also note that using the score from

PC1 (8) outpertorms the raw data value from the covariate with the highest loading
factor in PC1 (11)

Introduction

Methods

Determining molecular subtype from receptor status is an important step in breast
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molecular cancer characteristics could decrease the need for invasive biopsy procedures,
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leading to quicker clinical decision making and decreased cost of care for patients.
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After applying clustering, the number of

* Adding pre-biopsy clinical features can increase performance

features was reduced from 529 to 251.

Table 1. Clinicopathological characteristics by ER, PR, and HER2 status. Fig. 3 Clustered correlation map on all imaging features.

Objectives

1. Predict Biomarker Status: Predict ER, PR, and HER2 status using 529 DCE-
MRI features and assess the need for additional pre-operative clinical features.

* Training multiple models helped discover the best model and dataset for each target
Future Work

Results

, . L * Improve performance of MLP and SVM models by using raw imaging data
Table 2. Best-performing model and dataset combinations with highest mean AUC

across 5-fold cross-validation * Predict molecular subtype as a multinomial outcome

2. Dataset and model comparison: Determine which combination of model and
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